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Abstract 

Groundwater is of major importance to civilization, because it is the largest reserve of 

drinkable water in regions where humans can live. The pollution of groundwater by Non 

Aqueous Phase Liquid (NAPL) has become an increasing concern with industrialization. 

The effects of these pollutants may remain in the aquifers for many years because the 

residence time of groundwater is very slow. This work is thus aimed at investigating the 

remediation of polluted groundwater using steam injection. 

The governing equations for simulation of three phase flow in groundwater were 

developed based on conservation of mass, momentum and energy. The incorporated steam 

injection as a flux source. Numerical model was subsequently developed by solving the 

equations using finite element technique. The model was first used to determine recovery 

efficiency of benzene in an aquifer containing sand of porosity 0.2 and permeability of 1 x 

10
-16

m
-2 

with steam injection at 0.01m
3
/s. The numerical model was also used to determine 

the recovery efficiency of ethanol for all the cases treated in numerical investigations of 

recovery of benzene.  

The numerical results for recovery efficiency of benzene using steam injection at 0.01m
3
/s 

was 71.77%. The numerical results for recovery efficiency of ethanol using steam injection 

at 0.01m
3
/s was 74.75%.  

Steam injection for remediation of porous media contaminated by NAPL has been shown 

to be an efficient remediation technology.   

Keywords: Non Aqueous Phase Liquid, Steam injection, Recovery efficiency, 

Groundwater Remediation 
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Introduction 

   Groundwater is of major importance to civilization, because it is the largest reserve 

of drinkable water in regions where humans can live. About 40% of drinking water comes 

from the groundwater, almost 97% of the rural population drinks it and about 30-40% of the 

water used for agriculture comes from the groundwater (Sherma and Reddy, 2004). 

Groundwater may appear at the surface in the form of springs or it may be tapped by wells. It 

can also sustain the flow of surface water during the dry period. It is often preferable to surface 

water during the dry period because it is less contaminated by wastes and organisms. It is 

greater in quantity and more economical in distribution.  

Groundwater is a valuable resource and it must be protected from any pollution. It is 

important to conserve not only the quantity of the underground water supply, but even more its 

quality. The pollution of this major supply has become an increasing concern with increasing 

industrialization due to numerous human activities. Groundwater quality is endangered by a 

multitude of contaminants that may enter the ground from leaking disposal dumps, from the 

disposal of Industrial waste products and through accidental spills. These contaminants are 

almost immiscible with water and will often be present as Non Aqueous Phase Liquids 

(NAPLs). The pollution of groundwater by petroleum products is recognized as a major threat 

to the water resources. There is need for the polluted ground to be cleaned in order to avoid 

potential hydrocarbon contamination of groundwater aquifer. 

Innovative technologies for subsurface remediation, including in situ techniques 

based on heating the subsurface to enhance the recovery of organic contaminants, are 

increasingly being 

evaluated for use at specific sites as the limitations to the conventionally-used techniques 

are recognized(Davis,1998). With thermal technologies, the contaminated soil/groundwater 

is heated and this strongly affects the physical-chemical properties of the contaminant to 

the benefit of the recovery process. Among the thermal technologies, steam injection is 

being investigated as a potential method for remediation of polluted groundwater. Full 

scale operations have supported these results suggesting that the techniques ensure rapid 

and satisfactory clean up of every complicated contamination (Newmark et al. 1994, 

Newmark et al. 1998). One of the advantages of steam Injection is that various 

mechanisms may be active in the removal of contaminant from the subsurface. Hence, the 

technology is very versatile and can be used for highly heterogeneous geologic 
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environments and remediation of both above and below the water table. The process of 

steam injection for subsurface remediation involves several complex interacting 

phenomena at the pore level that are not considered in petroleum reservoir engineering ( 

Falta et al; 1992). It is characterized by heat and mass transfer in multiphase flow (gas, 

water, NAPL) in which the mass transfer of components between the phases is significant. 

It was originally developed as an enhanced oil recovery where it was the reduction in 

viscosity that was more important. It is obvious that much of the pioneering work on steam 

injection as a remediation technology was based on the experiences from steam injection 

as an enhanced oil recovery technique. There is a slight difference between these two 

applications. In enhanced oil recovery, the main objective is to remove the maximum 

amount of oil from the reservoir for as long as it is economically feasible. Small amounts 

of oil left in the formation are usually ignored. However, the purpose of remediation efforts 

is to remove as much of the contaminant as possible until clean up levels are achieved. 

  Hunt et al. (1988) presented experimental results showing complete removal of 

volatile organic compounds from a water-saturated column indicating that steam injection 

could be a very efficient remediation technology. These findings were further developed in 

two dimensional studies where Itamura (1996) and She and Sleep (1999) showed that 

heterogeneous porous media could be remediated when steam contacted the contaminant 

directly. Gudbjerg et al. (2003a) showed that even if a steam zone is not in direct contact 

with the NAPL rapid clean-up may still occur. Helmig et al. (1998) describe the 

comparison of one-dimensional steam injection experiments into sand-filled columns with 

numerical simulations. Based on that Class (1999) gives an example of the numerical 

simulation of a steam injection experiment into a column that was contaminated with 

xylene in residual saturation.White et. al (2004) modeled flow of nonvolatile nonaqueous 

phase liquid (NAPL) and aqueous phases that account for mobile, entrapped, and residual 

NAPL  in variably saturated water-wet porous media and compared against results from  

detailed laboratory experiments. Yang et. al(2003)  carried out numerical modeling  for 

groundwater remediation in Dublin, Ireland. The model was used to characterize 

contaminants at three dimensional scale. A two-dimensional intermediate scale sand box 

experiment was performed by Gudbjerg et al.(2004)  where an organic contaminant was 

emplaced below the water table at the interface between a coarse and a fine sand layer. 

Steam was injected above the water table and after an initial heating period the 

contaminant was recovered at the outlet. The experiment was successfully modeled using 
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the numerical code T2VOC and the dominant removal mechanism was identified to be 

heat conduction induced boiling of the separate phase contaminant.   

Numerical modeling has also been used at field-scale in predictive studies to support 

the design of steam remediation schemes (Adenekan and  Patzek 1994, Lee 1994, Ochs et 

al. 2003) and in studies analyzing the lessons learned from full-scale clean –up operations 

(Kuhlmann 2002, Gudbjerg et al. 2003). Hence, Numerical modeling has played an 

essential part throughout the development of steam injection as a remediation technology 

and several numerical multiphase models have been presented (Adenekan et al. 1993, 

Forsyth 1993, Panday et al. 1995, Class et al. 2002). Falta et al., (1995) performed 

simulations using the numerical model T2VOC. Numerical modeling gives better 

understanding of the physical processes. It allows coupling of several processes 

investigated in small-scale laboratory experiments.   

This work has thus investigated numerically the remediation of polluted groundwater 

using steam injection. 

 

Basic Governing Equations 

 The basic equations for modeling groundwater pollutant movement as given by 

Class et al (2002) are presented in eqn (1-5). 
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where μ = dynamic viscosity,      = fluid density, S =saturation,     = porosity 

kw  =relative permeability, σ= electric conductivity of  the medium, k= fluid phase, p=  

fluid pressure, X= mole fraction, n =contaminant, w = water ,g= gas. 

 

  

  Determination of Fluid Properties for the Numerical Simulation 

 There are certain fluid properties in the derived governing equations Eqn (1-5) that 

needed to be determined before the simulation can be successfully carried out. These 

properties are density, viscosity, vapour pressures, thermal conductivity, diffusion and 

enthalpy. The various relationship for these properties are hereby discussed.  

                                                                                                                                                                                                                                                                                                                                                                                                    

 Saturated liquid Densities as a Function of Temperature 

 Racket (1970) proposed that saturated liquid volumes be calculated by 

                    
            ----------------------------------------------------------------------(10)                                                                                                   

                
   

  
  
                -----------------------------------------------------------------(11)                                                                                           

Where     saturated liquid volume,    = critical volume,     critical compressibility 

factor,     critical temperature.  

 Yamada and Gunn (1973) proposed that    in Eq. (11) be correlated with the acentric 

factor: 

                              
            ------------------------------------------------(12)                                                                 

 

   Densities of Liquid Mixtures at their Bubble Point 

In order to extend equations of Eq. (12) to mixtures, mixing rules are required. Li 

(1971) and Spencer and Danner (1973) recommended 

        = R (∑
     

   
      

                 -------------------------------------------------------------

(13)                                                                                      

             ∑        -----------------------------------------------------------------------------

(14)                                                                                                            

With the relation of Yamada and Gunn (1973) 
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                             --------------------------------------------------------------(15)                                                                                         

Where           ⁄  Spencer and Danner (1973) recommend the mixing rules of Chueh 

and Prausnitz (1976). 

           ∑ ∑            -------------------------------------------------------------------------

(16)                        

          
     

∑       
 -------------------------------------------------------------------------------------

(17)                                                                                                                        

           =
         

   

  
  
   
    

  
   
  

 ----------------------------------------------------------------------------

(18)                                                                                                           

           (     )        
    --------------------------------------------------------------------

(19)                                                                                                

Li,s method sets       for Eq.(19). The HBT method of Eq. (16) to (19) has been 

extended to mixtures by Hankinson and Thomson (1979) with 

             
 ∑            

     

   
  ------------------------------------------------------------------------

(20)                                                                                                     

                ∑      
    ∑      

      ∑     
    

   ---------------------------------------

(21)                                                                 

         ∑   
 
       --------------------------------------------------------------------------------

(22)                                                                                       

            
     (     

   ) -------------------------------------------------------------------

(23)                                                                                      

 

 Vapor Pressures and Enthalpies of Vaporization 

 This section covers method for estimating and correlating vapor pressures of pure 

liquids. Since enthalpies of vaporization are derived from vapor pressure-temperature data, 

the estimation of this property is also included. 

 

 Correlation and Extrapolation of Vapour-Pressure Data 

 When the vapor phase of a pure fluid is in equilibrium with its liquid phase, 

theequality of chemical potential, temperature, and pressure in both phases leads to the 

Clapeyron equation (Smith, et al., 1996).  
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                   -------------------------------------------------------------------------------------

(24) 

Vapor pressures have been measured for various substances. Boublik (1984) 

presents tabulations of experimental data that have been judged to be of high quality for 

approximately 1000 substances. Antoine in 1888 proposed a simple modification of Eq. 

(24) which has been widely used over limited temperature ranges. 

                 
 

          
 ---------------------------------------------------------------------

(25)                                                                                     

Where T is in kelvins, Values of A, B and C are tabulated for a number of materials in 

Appendix A with     in bars and T in K. Additional tabulations of Antoine constants may 

be found in Boublik, et al. (1984), Dean (1999) and Yaws (1992). 

 

 Enthalpy of Vaporization at the Normal Boiling 

 A pure-component constant that is occasionally used in property correlations is the 

enthalpy of vaporization at the normal boiling point       Vetere (1995) determined an 

expression to correlate vapor pressures so that acentric factor is eliminated. When applied 

to the normal boiling point: 

                
       

                             
   

                  
          

 -------------------------------------------

(26)                                                            

F is 1.05 for C2+ alcohols and dimerizing compounds such as SO3, NO and NO2. For all 

other compounds investigated by Vetere, F is 1.0. When    and    are not available, Vetere 

proposed 

                          
   

    

  
   -------------------------------------------------------

(27)                                                                           

  
 is a fictitious molecular weight that is equal to the true molecular weight for most 

compounds. 

 

     Estimation of Low-Pressure Gas Viscosity 

Essentially all gas viscosity estimation techniques are based on either the 

Chapman-Enskog theory or the law of corresponding states. Experimental values of low-

pressure gas viscosities are compiled in Landolt-Bornstein (1955), Stephan and Lucas 

(1979), and Vargaftif, et al. (1996). Literature references for a number of substances along 
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with equations with which to calculate gas viscosities based on critically evaluated data 

may be found in Daubert, et al. (1997). Gas phase viscosity information can also be found 

in Dean (1999), Lide (1999), Perry and Green (1997), and Yaws (1995). 

      The first-order Chapman-Enskog viscosity equation was given as  

          
              

    
  --------------------------------------------------------------------------------

(28)                                                                                                           

In order to use this relation to estimate viscosities, the collision diameter   and the 

collision integral   and the collision integral Ωv must be found. For any potential curve, the 

dimensionless temperature    is related to   by 

             
  

 
-------------------------------------------------------------------------------------------

(29)                                                                                                                          Where k is 

Boltzmann’s constant and   is the minimum of the pair-potential energy. 

Neufeld, et al. (1972) proposed an empirical equation which is convenient for computer 

application: 

                   
                                 ----------------------------------

(30)                                             

 Where        ⁄ , A = 1.16145, B = 0.14874,  C = 0.52487,  D = 0.77320, E = 2.16178 

and F = 2.43787. Equation (30) is applicable from 0.3        with an average 

deviation of only 0.064%. 

Chung, et al. (1984, 1988) have employed Eq. (30) with 

    
 

 
 = 

  

      
 ----------------------------------------------------------------------------------------------

(31)                                                                                                                            

             
   

 ---------------------------------------------------------------------------------------

(32)                                                                                                                        

Where   ⁄  and    are in kelvins,   is in angstroms and    is in cm
3
/mol. 

                ---------------------------------------------------------------------------------------

(33)                                                                                                                 

Their final result can be expressed as: 

           
 
        

  
   
  

  -------------------------------------------------------------------------------- 

(34)                                                                                                          
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Where η = viscosity, µ  M = molecular weight, g/mol   T = temperature, K       critical 

volume, cm
3
/mol    = viscosity collision integral from Eq. (34) and   = 1.2593    

                       
     --------------------------------------------------------------

(35) 

Where   is the accentric factor and κ is a special correction for highly polar substances 

such as alcohols and acids. When Vc is in cm
3
/mole, Tc is in kelvins and µ is in debyes, 

             
 

         
 
 --------------------------------------------------------------------------------

(36)       

                                                                                            
                                         

 

 Viscosities of Gas Mixtures at Low Pressures 

The rigorous kinetic theory of Chapman and Enskog can be extended to determine 

the viscosity of low-pressure multicomponent mixtures (Chapman and Cowling, 1939; 

Hirschfelder, et al., 1954; Kestin, et al., 1976). In a further simplification of the kinetic 

theory approach, Wilke (1950) neglected second-order effects and proposed: 

  
     ∑

    
 ∑      
 
   

 
   

                                                                                       

           Where 

              
          

 
        

     

  (      ⁄ )    
 -------------------------------------------------------------------

(37)                                                                                           

              is found by interchanging subscripts or by 

                
  

  

  

  
    ---------------------------------------------------------------------------------

(38)                                                                                                              

           For a binary system of 1 and 2, with Eqs. (37 ) to (38), 

               
    

         
  

    

         
 ------------------------------------------------------------------

(39)                                             

          Where     viscosity of the mixture,        = pure component viscosities 

                 mole fractions 

          and 

                         
          

      ------------------------------------------------------

(40)                                                                     
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  -----------------------------------------------------

(41)                                                                          

                         
    

    
   --------------------------------------------------------------------------

(42)                                                                                                      

               As an approximate expression for       of Eq. (42) the following is proposed 

(Herning and Zipperer, 1936)                                                                                                                

                    
  

  
         

   -----------------------------------------------------------------------

(43)   

                                                                                                                                                                                 

 Estimation of Low-Temperature Liquid Viscosity 

The estimation methods for low-temperature liquid viscosity often employ 

structural-sensitive parameters which are valid only for certain homologous series or are 

found from group contributions. Orrick and Erbar (1974) employs a group contribution 

technique to estimate A and B in Eq. (44). 

ln 
  

  
  = A + 

 

 
 -----------------------------------------------------------------------------------

(44)                                                                                                                  

where      liquid viscosity, c       liquid density at 20˚C, g/cm
3
 

   M = molecular weight,  T = temperature, K 

 

    Prezdziecki and Sridhar (1985) Method 

 In this technique, the authors propose using the Hildebrand-modified Batschinski 

equation (Batschinski, 1913; Hildebrand, 1971; Vogel and Weiss, 1981) 

               
  

       
 ------------------------------------------------------------------------------------

(45)                                                                                                                     Where    

 liquid viscosity, cP      V = liquid molar volume, cm
3
/mol 

  And the parameters E and    are defined below. 

           E = -1.12 + 
  

                                           
 --------------------------------------

--(46)                                                     

                               
  

                   
 ---------------------------------------------

--(47)                                                               
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            Where      critical temperature, K     = critical pressure, bar 

               = critical volume, cm
3
/mol  M = molecular weight, g/mol 

                 freezing point, K     acentric factor,     = liquid molar volume at      

cm
3
/mol 

The authors recommend that    and V be estimated from     and   by the Gunn-

Yamada (1971) method. In this method, one accurate value of V is required in the 

temperature range of applicability of Eq. (48 ). The datum point is defined as    at   , 

then at any other temperature T, 

                     
       

     
    ---------------------------------------------------------------------------

(48)                                                                                                         

Where  

                               ----------------------------------------------------------------------

(49)                                                                                                 

               0.33593 – 0.33953             
  – 2.02512  

  + 1.11422  
  -----------------

(50)                            

                                             
  ----------------------------------------------

(51)   

                                                               

     Liquid Mixture Viscosity 

Based on a corresponding-states treatment for mixture compressibility factors 

(Teja, 1980; Teja and Sandler, 1980), Teja and Rice proposed an analogous form for liquid 

mixture viscosity. 

      Ln(             
                              ]

    
    

            
  ------------------------

(52)                                

Where the superscript (R1) and (R2) refer to two reference fluids. η is the viscosity,   the 

accentric factor, and   is a parameter defined here as : 

             
  
   

        
 --------------------------------------------------------------------------------------

(53)                                                                                                                      

The rules suggested by the authors to compute these mixture parameters are: 

             ∑ ∑            -----------------------------------------------------------------------------

(54)                                                                                                         



 ISSN: 2347-6532Impact Factor: 6.660  

 

12 Vol. 6 Issue 11, November 2018 

 

             
∑ ∑           

   
 --------------------------------------------------------------------------------

(55)                                                                                                             

             ∑       -----------------------------------------------------------------------------------

(56)                                                                                                                  

             ∑       -----------------------------------------------------------------------------------

(57)                                                                                                                   

               
    
   
     

   
 

 
  -------------------------------------------------------------------------------

(58)                                                                                                             

                                    
    ----------------------------------------------------------------

(59)                                                                                         

             is an interaction parameter of order unity which must be found from experimental 

data. 

 

 Thermal Conductivity 

 Through rather elementary arguments, the thermal conductivity of an ideal gas was 

found to be equal to          where v is the average molecule velocity, L is the mean free 

path,    is the constant volume heat capacity per molecule, and n is the number densities of 

molecules. It is quite inaccurate. For monatomic gases, which have no rotational or 

vibrational degrees of freedom, a more rigorous analysis yields 

   
  

  
           

    

     
  --------------------------------------------------------------------------

(60)                                                                                                         

or, written for computational ease, with    
 

 
   

              
    ⁄     

    
  -------------------------------------------------------------------------

(61)                                                                                                       

Where    thermal conductivity, W/(m.k) 

   temperature, K         Boltzmann’s constant = 1.3805        J/k 

   = molecular weight, kg/mo            characteristic dimension of molecule, m 

    collision integral dimensionless 

  

Thermal Conductivities of Polyatomic Gases 

 The reduced thermal conductivity may be expressed as 
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           ----------------------------------------------------------------------------------------------

(62)                                                                                                                        

       
    

     
 

    
      -----------------------------------------------------------------------------------

(63)                                                                                                          

        In SI units, if   = 8314J/(kmol K),    (Avogadro’s number) = 6.023   10
26

 (kmol)
-1

, 

and with    in kelvins,    in kg/mol, and    in N/m
2
, Γ has the units of m.K/W or inverse 

thermal conductivity. In more convenient units, 

               
   

 

  
   -----------------------------------------------------------------------------------

(64)                                                                                                              

   Where Γ is the reduced, inverse thermal conductivity,   is in kelvins,   is in g/mol, and 

   is in bars. 

The reduced thermal conductivity was employed by Roy and Thodos (1970), who, 

however, separated the                        

Where λ = low-pressure gas thermal conductivity, W/(m.K) and   is defined in Eq. (65). 

        =                                     -------------------------------------------

(65)                                                           

                 -------------------------------------------------------------------------------------

(66)                                                                                                                  

Chung, et al. developed an approach similar to that of Mason and Monchick (1962) to 

obtain a relation for  . By using their form and a similar one for low-pressure viscosity 

[Eq.  (67), one obtains 

     
   

   
  

     
  

 ⁄
  ------------------------------------------------------------------------------------------

(67)                                                                                                                        

Where λ=thermalconductivity/(m.K)       molecular weight, kg/mol 

  η = low-pressure gas viscosity, N.s/m
2
          = heat capacity at constant volume, 

J/(mol.K) 

   gas constant, 8.314 J/(mol.K) 

                                                             ----

(68) 

          
 
 ⁄ --------------------------------------------------------------------------------------

-(69) 
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                 + 1.3168  -----------------------------------------------------------------

-(70) 

            
 ---------------------------------------------------------------------------------------

-(71) 

 

 Thermal Conductivities of Low-Pressure Gas Mixtures 

 The theory for calculating the conductivity of for rare-gas mixtures has been 

worked out in detail (Hirschfelder, et al., 1954; Mason, 1958; Mason and von Ubisch, 

1960, Muckenfuss, 1958). The major problem is how to modify monatomic mixture 

correlations to apply to polyatomic molecules. In a form analogous to the theoretical 

relation for mixture viscosity,                                                              

   ∑
    

∑      
 
   

 
     ------------------------------------------------------------------------------------

-(72)                                                                                       

     Where     thermal conductivity of the gas mixtur          thermal conductivity of 

pure i 

           mole fraction of components i and j        a function, as yet unspecified   

        

Mason and Saxena (1958) suggested that     in Eq. (72 ) could be expressed as  

        
               

  
  
     

  (  
  
  
)    

 

 --------------------------------------------------------------------------

-(73)                                                                                                   

Where M = molecular weight, g/mol        monatomic value of the thermal conductivity 

   numerical constant near unity 

Mason and Saxena proposed a value of 1.065 for  , and Tandon and Saxena (1965) later 

suggested 0.85. As used here,   = 1.0. 

Noting that for monatomic gases that              

    

    
  

    

    
  ---------------------------------------------------------------------------------------------

(74)                                                                                                                                                                                                                                            

Substituting Eq. (72) into Eq. (73 ) and comparing with Eq. (68) gives 

          ----------------------------------------------------------------------------------------------

(75)                                                                                                                               
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Where     is the interaction parameter for gas-mixture viscosity.  

 

Thermal Conductivities of Gas Mixtures at High Pressures 

 Equations (106) to (115) were suggested as a way to estimate the high-pressure 

thermal conductivity of a pure gas. This procedure may be adapted for mixture given that 

mixing and combining rules are available to determine                      . Yorizane, et 

al (1983) have examined this approach and recommend the following: 

       
∑ ∑               

   
 -------------------------------------------------------------------------------

(76)                                                                                                           

        ∑ ∑            -------------------------------------------------------------------------------

(77)                                                                                                          

       ∑       ---------------------------------------------------------------------------------------

(78)                                                                                                                      

                    -----------------------------------------------------------------------------

(79)                                                                                                         

      =             ----------------------------------------------------------------------------------

(80)                                                                                                                  

      ∑        ----------------------------------------------------------------------------------------

(81) 

            -----------------------------------------------------------------------------------------------

(82)                                                                                                                                  

               
    --------------------------------------------------------------------------------------

(83)                                                                                                                      

              ----------------------------------------------------------------------------------------------

(84)                                                                                                                                 

      
      

  ⁄         
  ⁄   

 
   ----------------------------------------------------------------------------

(85)     

                                                                                                                                                                                                                                       

Estimation of the Thermal Conductivities of Pure Liquids 

 In an examination of the thermal conductivities of many diverse liquids, Latini and 

his coworkers (Baroncini, et al., 1981,1983, 1984); (Latini and Pacetti, 1977) suggest a 

correlation of the form: 
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  ⁄ -----------------------------------------------------------------------------------------

(86)                                                                                                                   Where    

 thermal conductivity of the liquid,W/(mk) 

   = normal boiling temperature (at 1 atm),        critical temperature, K 

   molecular weight, g/mol 

       ⁄ -----------------------------------------------------------------------------------------------

(87) 

   
    

 

    
  ------------------------------------------------------------------------------------------------

(88) 

 

 Diffusion Coefficient for Binary Gas Systems at Low Pressure 

The theory describing diffusion in binary gas mixtures at low to moderate pressures 

has been well developed. The theory results from solving the Boltzmann equation and the 

results are usually credited to both Chapman and Enskog, who independently derived the 

working equation   

        
  

  
  
           

        

   
    ------------------------------------------------------------------------

(89)   

Where MA, MB = molecular weights of A and B 

MAB = 2[(1/MA) + (1/MB)]
-1

----------------------------------------------------------------------------

(90) 

n = number density of molecules in the mixture     K = Boltzmann’s constant 

T = absolute temperature      ΩD = the collision integral for diffusion, is a function of 

temperature 

    is the characteristic length of the intermolecular force law 

   is a correction term, which is of the order of unity and n is expressed by the ideal-gas 

law, Eq. (90 ) may be written as 

     
           

    
   
    
   

 ------------------------------------------------------------------------------------

(91) 

Where DAB = diffusion coefficient, cm
3
/s     T = temperature, k      P = pressure, bar 
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   = characteristic length, A ΩD = diffusion collision integral, dimensionless and MAB is 

defined under eq. (91). To use Eq. (91) some rule must be chosen to obtain the interaction 

value     from    and   .    is a function only of  
  

   
.  

   The simple rules shown below are usually employed: 

          
   ---------------------------------------------------------------------------------------

(92) 

     
      

 
 ------------------------------------------------------------------------------------------

(93) 

   is tabulated as a function of KT/ε for the Lennard-Jones potential (Hirsch-felder, et al., 

1954), and various analytical approximations also are available (Johnson and Colver, 1969; 

Kestin, et al., 1977; Neufeld, et al., 1972). The accurate relation of Neufield, et al. (1972) 

is  

    
 

     
 

 

         
 

 

         
  

 

           
  --------------------------------------------------(94) 

Where          ⁄  

A= 1.06036             B=0.15610           C=0.19300          D=0.47635           E =1.03587 

F=1.52996              G=1.76474           H=3.89411 

These equations were then used to develop computer program which was then used to 

investigate the groundwater remediation using steam injection.             

A model was developed through solving the equations using finite element technique. 

The contaminants that are used for the numerical investigation are benzene and ethanol. 

  

 Computer Implementation  

 The governing equations for each case were solved through a COMSOL 

Multiphysics interphase for a 1m x 1m x1m aquifer. The numerical code automatically 

maximizes the time step according to the specified convergence and accuracy criteria. The 

equations were solved using the listed data for each case. The simulation is used to obtain 

the pressure, saturations and temperature in the domain of interest. 

 

 

 

 

 Geometric Representation of the Domain for Simulation 
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The geometric configuration of the domain for simulation is shown in Fig. 1. 

 

Fig. 1 Geometric Representation of the Domain   

Notably steam injection occurs at A while the contaminant is at B.  The sand box was 

considered as a three-dimensional system and was discretized into cells with dimensions 

1m x 1m x1 m. The measured steam injection rate was used as a flux boundary condition at 

the injection side of the sand box. At the right hand side of the sand box, a mixed boundary 

condition was specified that allowed outflow of a phase when the phase pressure exceeded 

atmospheric pressure and otherwise the boundary was a no-flux boundary.  

 

Result and Discussions 

 The numerical results for removal of benzene from groundwater using steam 

injection are reported. The operation practice used and the recovery efficiency in the 

numerical investigation were listed in Table 1-2.  

 

Table 1 Numerical Result for Groundwater Remediation of Benzene at Steam 

Injection Rate of 0.01m
3
/s 

Numerical no                                 1 

Contaminant                           Benzene 

Operation                                Steam Injection 

Recovery Efficiency                71.77%   

 

 

 

 

 

Table 2 Removal of Benzene from Groundwater using Steam Injection 

B 

A 
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    Time (s)                           Recovery Efficiency (%) 

        0                                                 0 

     3800                                            4.47 

     7600                                          11.61 

    11400                                         26.23 

    15200                                         49.08 

    19000                                         71.77 

  

The injection of steam created a zone with steam temperature in the upper part of 

the coarse sand layer with convection as the dominant heat transfer process. A vertical 

steam front, where the temperature rapidly changed from steam temperature to the 

temperature of the surroundings, moved with a constant velocity through the sand box. As 

the contaminated area was heated, the vaporized benzene was transported to the heat front 

where it condensed and accumulated.  The emplaced benzene recovered as separate phase 

liquid from the top of the water table was 71.77%. The results presented are illustrated in 

Fig. 1 which shows the graph of recovery efficiency against time of treatment. The 

recovery efficiency increased with time of treatment and it reached a maximum value at 

the end of treatment. 

 

 

                  

  Fig. 2  Benzene Removal efficiency vs Time for Numerical Investigation at steam 

injection  rate of 0.01m
3
/s 

 The numerical results for removal of ethanol from groundwater using steam 

injection are reported. The recovery efficiency was also determined for incidence of steam 
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injection at 0.01m
3
/s. The operation practice used and the recovery efficiency in the 

numerical investigation were listed in Table 3-4. The numerical results for recovery 

efficiency of ethanol using steam injection only at 0.01m
3
/s yielded 74.75 %. The results 

presented are illustrated in Fig. 3 which shows the graph of recovery efficiency against 

time of treatment. The recovery efficiency also increased with time of treatment and it 

reached a maximum value at the end of treatment. 

 

 

 

Table 3 Numerical Result for Groundwater Remediation of Ethanol at Steam 

Injection Rate of 0.01m
3
/s 

Numerical no                                 1 

Contaminant                             Ethanol 

Operation                                 Steam Injection 

Recovery Efficiency                  74.75% 

 

Table 4  Removal of Ethanol from Groundwater using Steam Injection  

     Time (s)                                Recovery Efficiency (%) 

           0                                                0   

        4000                                           3.71 

        8000                                           9.72         

        12000                                        21.66 

        16000                                        41.53 

        20000                                        74.75                                         
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Fig. 3 Ethanol Removal efficiency vs Time for Numerical Investigation at steam 

injection rate of 0.01m
3
/s 

  Comparison of the Present Work on Groundwater Remediation with Similar Works 

by other Researchers 

 In Table 5, the recovery efficiency of the contaminants (benzene and ethanol) show 

that steam injection technique for remediation of polluted groundwater using steam 

injection only is an efficient technology. The numerical results for recovery of pollutant 

from groundwater were in agreement with the similar work by other researchers using 

DCB and kerosene as contaminants with a deviation of  -1.87–6.65% and 1.64–10.36% 

respectively. 

Table 5 Comparison of Recovery Efficiency for Numerical Investigation of Groundwater 

Remediation using Steam Injection 

                                                                                                                                                           

Parameter         Present Work      Gudbjerg et al.,     Dare and  Sasaki       Percentage  

                                                              2003                           2012                     Deviation                                                                           

Contaminant            Benzene                DCB                        Petrol         

                                 Ethanol                                                    

Steam Injection        0.01                      0.01                            0.01                           0.00 

Rate 

% Recovery             71.77%                  67%                     73.11%                       -1.87 -  6.65 

                                 74.75%                  67%                        73.11%                     1.64  - 10.36 
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Conclusions 

The numerical investigation was performed to investigate the recovery efficiency of 

ethanol and benzene at steam injection of 0.01 m
3
/s. The numerical results for recovery 

efficiency of benzene using steam injection only at 0.01m
3
/s yielded 71.77 % . The numerical 

results for recovery efficiency of ethanol using steam injection only at 0.01m
3
/s yielded 74.75 %. 

Steam injection for remediation of porous media contaminated by NAPL has been shown to be 

an efficient technology. The result demonstrated the ability of steam injection to effectively 

recover contaminants from the subsurface.  
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